ON SIMPLE GROUPS AND SIMPLE SINGULARITIES

BY

N. I. Shepherd-Barron

DPMMS, Cambridge University
CMS, Wilberforce Rd., Cambridge CB3 0WB, UK
e-mail: nisb@dpmms.cam.ac.uk

ABSTRACT

We give a proof of a characteristic p version of Brieskorn's theorem, namely, that if G is a simply connected simple algebraic group of type A, D or E over an algebraically closed field k whose characteristic is very good for G, then the categorical quotient morphism $G \to G//G_{ad}$ yields, when restricted to a general slice through a point P in the subregular unipotent orbit in G, a miniversal deformation of the rational double point over k of the same type as G.

1. Introduction

Suppose that G is a split simply connected simple Chevalley group of rank r and type A, D or E over $\mathbb Z$ with adjoint group G_{ad} and that k is an algebraically closed field whose characteristic p is very good for G. Grothendieck conjectured that the categorical quotient morphism $G \to G//G_{ad}$ yields, when restricted to a general slice through a point P in the subregular unipotent orbit in $G \otimes k$, a miniversal deformation (also known as a semi-universal deformation) of the rational double point (RDP) over k of the same type as G. Brieskorn [B] proved this, in the context of Lie algebras over k rather than groups over $\mathbb Z$, provided that p=0. A complete proof was published by Slodowy [SI], who extended the result to the case where $p>4\operatorname{Cox}(G)-2$. His proof uses the Jacobson–Morozov lemma to construct a slice that is equivariant under a certain $\mathbb G_m$ -action, and then exploits the fact (which is verified case by case) that the degrees of the co-ordinates on a miniversal deformation space are the degrees of the Weyl group.

Received February 11, 1999 and in revised form June 7, 2000

This note, which is a sequel to Hinich's papers [H1,2], presents a proof of Brieskorn's theorem, in the context of groups, when p is very good. It avoids the coincidence just mentioned, but depends upon those listed as (1)–(3) below. We show first that Grothendieck's construction yields a miniversal deformation of the minimal resolution \tilde{Y} of Y. We then deduce the result for Y via a very easy local Torelli theorem for \tilde{Y} in characteristic zero. (The idea of analyzing the deformations of an RDP by first analyzing those of its minimal resolution appears in [P].) In particular, we recover the existence of a Weyl group action on $\operatorname{Def}_{\widetilde{Y}}$ whose quotient is Def_Y (where Def_Z denotes a miniversal deformation space of an object Z, when it exists) and that a smoothing of an RDP has a simultaneous resolution, without base-change, if and only if there is no monodromy on the vanishing cohomology.

Hinich works in the context of Lie algebras. In [H1], he proves, by Grothendieck duality and Grauert-Riemenschneider vanishing, that the normalization of any nilpotent orbit closure has rational Gorenstein singularities, while in [H2] he gives a quick identification when p=0 of the singularities along the subregular nilpotent orbit. This argument relies upon (1)–(2):

- (1) In any characteristic, and even in mixed characteristic, a surface singularity is an RDP if it has a resolution with trivial canonical class, and this resolution is then minimal [Li]. (In fact, Hinich gives a direct proof that the exceptional curves have self-intersection -2.) This follows from general results about rational surface singularities.
- (2) In good characteristic, RDPs are determined up to isomorphism by the combinatorial structure of a minimal resolution. This is something of a lucky coincidence, and is only known to be true from an inspection of Artin's list [A2].

If also p is very good, then the the orbit maps of G_{ad} are separable, and Hinich's argument extends without material change to identify the singularities.

The other fact that we exploit, that again depends upon an inspection of Artin's list, is:

(3) In very good characteristic, the dimension of a miniversal deformation space equals the rank (the number of curves in the minimal resolution).

Hinich's result identifies the singularities also when G is not simply laced, and Slodowy's results cover this case also; they describe the induced deformation as a particular invariant subspace of a miniversal deformation of the singularity. We have not tried to determine whether the approach taken here can be made to work in this context.

Notation: Vector bundles will be denoted by capital italic letters, and their

sheaves of sections by the corresponding script letters. A miniversal deformation space of a space V will be denoted by Def_V , when it exists. We say that p is **good** if $p \neq 2, 3, 5$ for type E_8 , $p \neq 2, 3$ for type E_6 and E_7 , and $p \neq 2$ for type D. Moreover, p is **very good** if also p does not divide r+1 for type A_r .

2. Grothendieck's construction

Fix, over \mathbb{Z} , a maximal torus T of G, with Weyl group W, and then fix a Borel subgroup B containing T. Denote by e the identity of $T \otimes k$ and, by abuse of notation, its image in T/W. Let $\phi \colon G \to G//G_{ad}$ be the categorical quotient by the adjoint action. If χ_i is the trace of the fundamental representation ρ_i of G, which is defined over \mathbb{Z} , then there are natural ring homomorphisms $\mathbb{Z}[\chi_1,\ldots,\chi_r] \to \mathcal{O}_G^{G_{ad}} \to \mathcal{O}_T^W$ whose composite is, by exponential invariant theory, an isomorphism. One can show [St] that the other maps are also isomorphisms, so that $G//G_{ad}$ is identified with Spec $\mathbb{Z}[\chi_1,\ldots,\chi_r]$ and the natural map $T \to G//G_{ad}$ induces an isomorphism $T/W \to G//G_{ad}$. The unipotent variety N is $\phi^{-1}(e)$. It is flat over \mathbb{Z} and all geometric fibres are normal.

For any parabolic subgroup P of G and V a connected subgroup of G that is normalized by P (all over \mathbb{Z}), there is a proper collapsing map $(G \times V)/P \to G$, where P acts on $G \times V$ by $p(g,v) = (gp^{-1},p(v))$, induced by $G \times V \to G$: $(g,v) \mapsto g(v)$.

We can identify $(G \times P)/P$ with the incidence variety $\{(P',v)|v \in P'\} \subset (G/P) \times G$, where G/P is identified with the variety of conjugates of P, and then the collapsing map is identified with the projection to G.

Put $\widetilde{X}=(G\times B)/B$ and let $\widetilde{X}\to X\to G$ be the Stein factorization of the collapsing map. Let U denote the unipotent radical of B, so that the map $T\to B/U$ is an isomorphism. Via this, B acts trivially on T and there is a projection $\psi\colon \widetilde{X}\to T$. Then $\widetilde{X}_e=\psi^{-1}(e)$ is the subvariety $((G\times U)/B)\otimes k$.

THEOREM 2.1: (1) (Springer) The collapsing map $\widetilde{X} \to G$ induces $\widetilde{X}_e \to N$, and this is a desingularization.

(2) (Grothendieck) There is a commutative diagram

$$\begin{array}{ccc}
\widetilde{X} \xrightarrow{\rho} X & \longrightarrow G \\
\downarrow^{\psi} & \downarrow^{\phi_1} & \downarrow^{\phi} \\
T \xrightarrow{=} T & \xrightarrow{\pi} G//G
\end{array}$$

where the right square is Cartesian over some neighbourhood of $\phi(e)$ and ψ is smooth.

Proof: (1) See [St, pp. 129–130].

(2) See [Sl, p. 50].

The next point is to describe a part of the exceptional locus of $\widetilde{X} \to X$. Fix a simple root β and let $P_{\beta} \supset B$ be the corresponding rank 1 parabolic subgroup, so that $P_{\beta}/B \cong \mathbb{P}^1$. Let V_{β} denote the soluble radical of P_{β} and U_{β} the unipotent radical. Then there is a commutative exact diagram

$$1 \longrightarrow U_{\beta} \longrightarrow V_{\beta} \longrightarrow \beta^{\perp} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow U \longrightarrow B \longrightarrow T \longrightarrow 1,$$

where the vertical maps are inclusions and β^{\perp} is the kernel of the character β . Note that V_{β} has codimension 2 in B, so that $E_{\beta} = (G \times V_{\beta})/B$ has codimension 2 in \widetilde{X} , and that the image of the composite $E_{\beta} \to \widetilde{X} \to T$ is β^{\perp} .

LEMMA 2.2: The exceptional locus of $\widetilde{X} \to X$ contains E_{β} .

Proof: The collapsing map $E_{\beta} \to G$ factors through the \mathbb{P}^1 -bundle $\pi_{\beta} \colon E_{\beta} \to (G \times V_{\beta})/P_{\beta}$.

PROPOSITION 2.3: Suppose that C is a fibre of $\pi_{\beta} \colon E_{\beta} \to (G \times V_{\beta})/P_{\beta}$. Then $(2.3.1) \ N_{E_{\beta}/\widetilde{X}}|_{C} \cong O(-1)^{2}$ and

(2.3.2) every deformation of C in \widetilde{X} lies in E_{β} .

Proof: (2.3.1) From the description of $E_{\beta} \hookrightarrow \widetilde{X}$ as an inclusion of associated bundles over G/B, it follows that $N_{E_{\beta}/\widetilde{X}} \cong (G \times V_{\beta} \times (\operatorname{Lie} B/\operatorname{Lie} V_{\beta}))/B$. We identify C with the subvariety $(P_{\beta} \times \{1\})/B$ of E_{β} ; then $N_{E_{\beta}/\widetilde{X}}|_{C} \cong (P_{\beta} \times (\operatorname{Lie} B/\operatorname{Lie} V_{\beta}))/B$. Choose a copy G_{1} of SL_{2} in a Levi subgroup of P_{β} so that $B_{1} = B \cap G_{1}$ is a Borel subgroup of G_{1} . So $N_{E_{\beta}/\widetilde{X}}|_{C} \cong (G_{1} \times \operatorname{Lie} B_{1})/B_{1}$. From the exact sequence

$$0 \to \operatorname{Lie} U_1 \to \operatorname{Lie} B_1 \to \operatorname{Lie} T_1 \to 0$$

of B_1 -modules, where U_1 is the unipotent radical of B_1 and T_1 a torus in B_1 , it follows that $N_{E_{\beta}/\widetilde{X}}|_C$ is either $O\oplus O(-2)$ or $O(-1)^2$ over \mathbb{P}^1 . So if $H^0(\mathbb{P}^1,N_{E_{\beta}/\widetilde{X}}|_C)\neq 0$, then Lie B_1 contains a B_1 -invariant vector. But it does not, and so $N_{E_{\beta}/\widetilde{X}}|_C\cong O(-1)^2$.

(2.3.2) It is enough to show that $\operatorname{Hilb}_{\widetilde{X}}$ is smooth at [C] and that $\dim_{[C]}\operatorname{Hilb}_{\widetilde{X}}=\dim(G\times V_{\beta})/P_{\beta}$. For this, it is enough to show that $\mathcal{N}_{C/\widetilde{X}}\cong\mathcal{O}(-1)^2\oplus\mathcal{O}^{\dim G-3}$. There is an exact sequence

$$0 \to N_{C/E_{\beta}} \to N_{C/\widetilde{X}} \to N_{E_{\beta}/\widetilde{X}}|_{C} \to 0,$$

so that now (2) follows from (1) and the fact that $N_{C/E_{\beta}}$ is free, since C is a fibre of $E_{\beta} \to (G \times V_{\beta})/P_{\beta}$.

Now suppose that p is very good. Then the action of G_{ad} on any orbit is smooth and it follows [Sl, pp. 60–69] that there is an (r+2)-dimensional complete slice of G through a geometric point P of the subregular unipotent orbit N_1 whose inverse image is smooth. Localize the lower row by completing at e. In particular, this makes a base change from $\mathbb Z$ to the Witt vectors $\mathbb W$, which will be the base ring henceforth. Denote the slices on the upper row by a superscript dagger † , except that we write $X_e^{\dagger} = Y$ and $\widetilde{X}_e^{\dagger} = \widetilde{Y}$.

Define $F_{\beta} = ((G \times U_{\beta})/B) \otimes k$. Note that $F_{\beta} = E_{\beta} \cap \widetilde{X}_{e}$ and F_{β} is a divisor in \widetilde{X}_{e} . Define $C_{\beta} = F_{\beta} \cap \widetilde{Y} = E_{\beta} \cap \widetilde{Y}$.

PROPOSITION 2.4: [H2] (2.4.1) The exceptional locus of $\tilde{Y} \to Y$ is $\bigcup_{\beta} C_{\beta}$. (2.4.2) Each C_{β} is an irreducible (-2)-curve and the configuration that they form

(2.4.2) Each C_{β} is an irreducible (-2)-curve and the configuration that they form is the same as the Dynkin diagram of G.

(2.4.3) (Y,P) is an RDP of the same type as G and $\widetilde{Y} \to Y$ is its minimal resolution.

Proof: As already mentioned, Hinich [H2] gives a transparent proof of this, depending only on the facts (1)–(2) listed in the introduction. He proves first that the dualizing sheaf $\omega_{\widetilde{Y}}$ is trivial, which ensures that (Y,P) is an RDP and $\widetilde{Y} \to Y$ is its minimal resolution. He then identifies the exceptional locus, which is enough. He works in the context of complex Lie algebras but, except for replacing $H^2(G/B,\mathbb{Z})$ by $\operatorname{Pic}(G/B)$ and $T^*(G/B)$ by $(G \times U)/B$, which is easily seen to have trivial dualizing sheaf, his proof carries over unchanged.

3. The miniversal deformation of \widetilde{Y}

Suppose that $f \colon \widetilde{Y} \to (Y, P)$ is the minimal resolution of an RDP and that E_1, \ldots, E_r are the exceptional curves in \widetilde{Y} . Any deformation of \widetilde{Y} can be blown down to a deformation of Y, giving a morphism $\mathrm{Def}_{\widetilde{Y}} \to \mathrm{Def}_{Y}$.

PROPOSITION 3.1: Assume that char k = p is very good for the type of Y. (3.1.1) $\operatorname{Def}_{\widetilde{Y}}$ is smooth over $\operatorname{Spec} W$ of relative dimension r.

(3.1.2) The spaces $H_i \subset \operatorname{Def}_{\widetilde{Y}}$ of deformations where E_i is preserved are smooth transverse divisors over $\operatorname{Spec} \mathbb{W}$.

Proof: There is an exact sequence

$$0 \to T_{\widetilde{Y}}(-\log \sum E_i) \to T_{\widetilde{Y}} \to \oplus \mathcal{N}_{E_i/\widetilde{Y}} \to 0.$$

Since $H^2(\widetilde{Y}, T_{\widetilde{Y}}) = H^2(\widetilde{Y}, T_{\widetilde{Y}}(-\log \sum E_i)) = 0$, by reason of dimension, $\operatorname{Def}_{\widetilde{Y}}$ is smooth of dimension at least r over \mathbb{W} . Suppose that $\widetilde{\mathfrak{Y}} \to \operatorname{Def}_{\widetilde{Y}}$ is a miniversal deformation of \widetilde{Y} . Let R be the quasi-separated algebraic space that represents [A1] the functor $\operatorname{Res}_{\widetilde{\mathfrak{Y}} \to \operatorname{Def}_{\widetilde{Y}}}$. Then [A1, Theorem 3] there is a henselization \widetilde{R} of R that surjects finitely to Def_{Y} , while also [A1, Lemma 3.3] there is a smooth morphism $R \to \operatorname{Def}_{\widetilde{Y}}$. Now an inspection of Artin's lists [A2] shows that Def_{Y} is of dimension r over $\operatorname{Spec} \mathbb{W}$, and (3.1.1) follows.

Finally, the tangent space of H_i is $\ker(H^1(\widetilde{Y}, T_{\widetilde{Y}}) \to H^1(E_i, \mathcal{N}_{E_i/\widetilde{Y}}))$, and we are done.

LEMMA 3.2: Suppose that Y is of type A_1 and that $f \colon \widetilde{\mathcal{Y}} \to S = \operatorname{Spec} \mathbb{W}\{t\}$ is a deformation of \widetilde{Y} . Put $S_0 = \operatorname{Spec} \mathbb{W}\{t\}/(p)$ and $\widetilde{\mathcal{Y}}_0 = \widetilde{\mathcal{Y}} \times_S S_0$. Then f embeds into $\operatorname{Def}_{\widetilde{Y}}$ if $\mathcal{N}_{E_1/\widetilde{\mathcal{Y}}_0} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

The converse is also true, but we shall not need it.

Proof: Suppose that S_1 is the miniversal deformation space of \widetilde{Y} and that $\alpha \colon S \to S_1$ is the morphism induced by f. Since S and S_1 are W-flat, α is an embedding if and only if $\alpha \otimes 1_k$ is so. Hence it is enough to show that f_0 embeds into the miniversal deformation.

Put $\Sigma = \operatorname{Spec} \mathcal{O}_{S_0}/(t^2)$. If f_0 does not embed into the miniversal deformation, then $\widetilde{\mathcal{Y}}_0 \times \Sigma \to \Sigma$ is trivial, so that $\mathcal{N}_{E_1/\widetilde{\mathcal{Y}}_0} \cong \mathcal{N}_{E_1/\widetilde{Y}} \oplus \mathcal{O}$.

Proposition 3.3: The map $E_{\beta}^{\dagger} \to X^{\dagger}$ is a \mathbb{P}^1 -bundle over its image.

Proof: Let $\tau: B \to T$ be the projection. Put $\widetilde{X}_{\beta} = (G \times \tau^{-1}(\beta^{\perp}))/B = \psi^{-1}(\beta^{\perp})$. Put $X_{\beta} = \phi_1^{-1}(\beta^{\perp})$; then it is enough to show that the fibres of $E_{\beta}^{\dagger} \to X_{\beta}^{\dagger}$ are copies of \mathbb{P}^1 .

Since U_{β} is the transverse intersection of V_{β} and U inside $\tau^{-1}(\beta^{\perp})$, it follows that E_{β} and \widetilde{X}_e meet transversely inside \widetilde{X}_{β} . So $E_{\beta} \cap \widetilde{X}_e$, and so $E_{\beta}^{\dagger} \cap \widetilde{X}_e^{\dagger}$, is smooth. By 2.3.2 (rather, its proof) $E_{\beta}^{\dagger} \cap \widetilde{X}_e^{\dagger}$ is a single copy of \mathbb{P}^1 .

Theorem 3.4: $\widetilde{X}^{\dagger} \to T$ is a miniversal deformation of \widetilde{Y} .

Proof: As in the proof of 3.2, it is enough to pass from \mathbb{W} to k and work over k. We do this, but suppress the subscript k in what follows.

The map $\widetilde{X}^{\dagger} \to T$ is induced from a morphism $g: T \to \operatorname{Def}_{\widetilde{Y}}$. By 2.5.2, $E_{\beta}^{\dagger} \cap \widetilde{Y}$ is a copy C_{β} of \mathbb{P}^1 . Let $H_{\beta} \subset \operatorname{Def}_{\widetilde{Y}}$ be the hyperplane consisting of deformations where C_{β} is preserved. Then $g^{-1}(H_{\beta})$ is, by 2.3.2, set-theoretically equal to the image in T of E_{β}^{\dagger} , which is just β^{\perp} .

Choose co-ordinates $\{t_{\beta}\}$ on $\operatorname{Def}_{\widetilde{Y}}$ and $\{z_{\beta}\}$ on T so that $H_{\beta}=(t_{\beta})_0$ and $\beta^{\perp}=(z_{\beta})_0$. Then g is identified with a homomorphism $k\{t_{\beta_1},\ldots,t_{\beta_r}\}\to k\{z_{\beta_1},\ldots,z_{\beta_r}\}$ such that $t_{\beta_i}\mapsto u_iz_{\beta_i}^{n_i}$ for some $n_i\in\mathbb{N}$ and some unit u_i .

Suppose that $n_i > 1$. Write $\beta_i = \beta$. Take a slice $\Delta_1 = \operatorname{Spec} k\{t_1\}$ of $\operatorname{Def}_{\widetilde{Y}}$ through a general point P of H_{β} . Put $\Delta = \Delta_1 \times_{\operatorname{Def}_{\widetilde{Y}}} T$; then $\Delta \cong \operatorname{Spec} k\{t\}$ and $\Delta \to \Delta_1$ is of degree n_i . Denote fibre products with Δ by a subscript.

By 3.3, the fibre of E_{β}^{\dagger} over P is a fibre C of π_{β} . Then $\widetilde{X}_{\Delta}^{\dagger} \to \Delta$ induces, by restricting to an étale neighbourhood of C, a deformation of the minimal resolution of an A_1 -singularity which, by construction, does not embed into the miniversal deformation. So $N_{C/\widetilde{X}_{\Delta}^{\dagger}} \cong O \oplus O(-2)$. Moreover, C is a fibre of $E_{\beta} \to Z_{\beta}$, so that $N_{C/\widetilde{X}_{\Delta}^{\dagger}} \cong N_{E_{\beta}/\widetilde{X}}|_{C}$. This contradicts 2.3.1.

So $n_i = 1$ and g is an isomorphism.

4. The miniversal deformation of Y

We shall show that $G^{\dagger} \to S = G//G_{ad}$ is a miniversal deformation of $Y = X_e^{\dagger}$. Let $\mathfrak{Y} \to V$ be a miniversal deformation of Y, so that there is a Cartesian square

LEMMA 4.1: γ is finite.

Proof: If not, then there is a curve Δ through e in S such that the induced family $G_{\Delta}^{\dagger} \to \Delta$ is a trivial deformation of Y. Then there is a curve Δ_1 in T, dominating Δ , such that the induced family $\widetilde{X}_{\Delta_1}^{\dagger} \to \Delta_1$ is a trivial deformation of \widetilde{Y} , contradicting Theorem 3.4.

First, assume that p=0, so that we can take $k=\mathbb{C}$.

For any parameter space B, denote the discriminant by D_B and put $B \setminus D_B = B_0$.

Fix a base point $s_0 \in S_0$, with image $v_0 \in V_0$. We get an identification $G_{s_0}^{\dagger} = \mathfrak{Y}_{v_0}$. Let M denote the lattice $H_c^2(\mathfrak{Y}_{v_0}, \mathbb{Z})$, which we regard as a subgroup of $H^2(\mathfrak{Y}_{v_0}, \mathbb{Z})$. Since there is a simultaneous resolution $\widetilde{X}^{\dagger} \to T$, we can and do fix an identification of M with the lattice L generated by the exceptional curves in \widetilde{Y} . M also contains the lattice N generated by the vanishing cycles.

Since there is a simultaneous resolution over T, there is no monodromy over any open subset of T on M. Let $U_0 \to V_0$ be the étale Galois covering that kills the monodromy on M and $U \to V$ the normalization of V in the function field of U_0 ; then $T \to V$ factors through U, so that there is a commutative square

$$T \longrightarrow S$$

$$\downarrow \gamma$$

$$U \longrightarrow V.$$

Let T_0 denote the inverse image of V_0 in T.

LEMMA 4.2: The Hodge-de Rham spectral sequence yields an isomorphism $\alpha: H^2(\widetilde{Y}, \mathbb{C}) \to H^1(\widetilde{Y}, \Omega^1)$.

Proof: Since $E_1^{pq} = 0$ for q > 1, the map α exists and is surjective. Since both sides have dimension rank(G), the result follows.

Consider the family $\psi \colon \widetilde{X}^{\dagger} \to T$ and construct a period map $P \colon T \to H^1(\widetilde{Y},\Omega^1)$ as follows. Pick a generator ω of $\omega_{G^{\dagger}/S}$; this lifts to a generator of $\Omega^2_{\widetilde{X}^{\dagger}/T}$. Then $\omega|_{\widetilde{X}^{\dagger}_t}$ can be transported along a path from t to e, and so defines a class in $H^2(\widetilde{Y},\mathbb{C})$. Define $P(t) = P_{\omega}(t) = \alpha([\omega|_{\widetilde{X}^{\dagger}}])$.

Proposition 4.3: P is an isomorphism at e.

Proof: The derivative of P at e is a map $H^1(\widetilde{Y}, T_{\widetilde{Y}}) \to H^1(\widetilde{Y}, \Omega^1)$. As is well known [K, 3.4, especially 3.4.12], this is identified with contraction against $\omega|_{\widetilde{Y}}$. Since $\omega|_{\widetilde{Y}}$ induces an isomorphism $T_{\widetilde{Y}} \to \Omega^1_{\widetilde{Y}}$, it does so on H^1 .

COROLLARY 4.4: The map $\delta: T \to U$ is an isomorphism.

Proof: Since there is no monodromy over U_0 , $P|_{T_0}$ factors through U_0 . Now the result follows from 4.3.

Theorem 4.5: $\gamma: S \to V$ is an isomorphism.

Proof: Put $\Gamma = \operatorname{Gal}(U/V)$. Then Γ is generated by reflexions in the vanishing cycles [Lo]. Since $N \subset M$ the vanishing cycles are roots in M, so that $\Gamma \subset W$. However, #W divides $\#\Gamma$, by 4.4, so that $S \to V$ is a finite map of smooth germs and is of degree 1.

Now drop the assumption that p=0.

Theorem 4.6: γ and δ are isomorphisms over Spec W.

Proof: Put $K = \operatorname{Frac}(\mathbb{W})$, so that γ , δ are finite morphisms of smooth germs over \mathbb{W} and $\gamma \otimes 1_{\bar{K}}$, $\delta \otimes 1_{\bar{K}}$ are isomorphisms. Then γ , δ are isomorphisms.

COROLLARY 4.7: Suppose that $\mathfrak{Y} \to D$ is a deformation of an RDP Y in very good characteristic and that D is normal. Then there is a simultaneous resolution $\widetilde{\mathfrak{Y}} \to D$ if and only if the monodromy action on the vanishing cohomology is trivial.

Proof: We identify T with $\operatorname{Def}_{\widetilde{Y}}$ and S with Def_{Y} . So there is a simultaneous resolution $\widetilde{\mathfrak{Y}} \to D$ if and only if any (or all) of the natural morphisms $D \to \operatorname{Def}_{Y} \cong S$ factors through T. Since δ is an isomorphism, we are done.

ACKNOWLEDGEMENT: I am very grateful to the referee, who pointed out a serious error and whose other remarks have greatly improved the quality of the exposition.

References

- [A1] M. Artin, Algebraic construction of Brieskorn's resolutions, Journal of Algebra 29 (1974), 330–348.
- [A2] M. Artin, Coverings of the rational double points in characteristic p, in Complex Analysis and Algebraic Geometry (W. Baily and T. Shioda, eds.), Cambridge University Press, 1977, pp. 11–22.
- [B] E. Brieskorn, Singular elements of semisimple algebraic groups, Actes Congrès Int. Math., Vol. 2, Nice, 1970, pp. 279–284.
- [H1] V. Hinich, Onthe singularities of nilpotent orbits, Israel Journal of Mathematics 73 (1991), 297–308.
- [H2] V. Hinich, On Brieskorn's theorem, Israel Journal of Mathematics 76 (1991), 153-160.

- [K] N. Katz, Nilpotent connections and the monodromy theorem, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 39 (1970), 175-232.
- [Li] J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 36 (1969), 95–279.
- [Lo] E. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series 77, Cambridge University Press, 1984.
- [P] H. Pinkham, Résolution simultanée de points doubles rationelles, in Séminaire sur les singularités des surfaces, Lecture Notes in Mathematics 777, Springer, Berlin, 1980.
- [SI] P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics 815, Springer, Berlin, 1980.
- [St] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics 366, Springer, Berlin, 1974.